Topological Complexity of omega-Powers: Extended Abstract

نویسندگان

  • Olivier Finkel
  • Dominique Lecomte
چکیده

The operation V → V ω is a fundamental operation over finitary languages leading to ω-languages. It produces ω-powers, i.e. ω-languages in the form V , where V is a finitary language. This operation appears in the characterization of the class REGω of ω-regular languages (respectively, of the class CFω of context free ω-languages) as the ω-Kleene closure of the family REG of regular finitary languages (respectively, of the family CF of context free finitary languages) [Sta97a]. Since the set Σ of infinite words over a finite alphabet Σ can be equipped with the usual Cantor topology, the question of the topological complexity of ω-powers of finitary languages naturally arises and has been posed by Niwinski [Niw90], Simonnet [Sim92], and Staiger [Sta97a]. A first task is to study the position of ω-powers with regard to the Borel hierarchy (and beyond to the projective hierarchy) [Sta97a,PP04].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Complexity of Context-Free omega-Languages: A Survey

We survey recent results on the topological complexity of context-free ω-languages which form the second level of the Chomsky hierarchy of languages of infinite words. In particular, we consider the Borel hierarchy and the Wadge hierarchy of non-deterministic or deterministic context-free ω-languages. We study also decision problems, the links with the notions of ambiguity and of degrees of amb...

متن کامل

There Exist Some omega -Powers of Any Borel Rank

The operation V → V ω is a fundamental operation over finitary languages leading to ω-languages. Since the set Σ of infinite words over a finite alphabet Σ can be equipped with the usual Cantor topology, the question of the topological complexity of ω-powers of finitary languages naturally arises and has been posed by Niwinski [Niw90], Simonnet [Sim92] and Staiger [Sta97a]. It has been recently...

متن کامل

Classical and Effective Descriptive Complexities of omega-Powers

We prove that, for each countable ordinal ξ ≥ 1, there exist some Σ0ξ-complete ω-powers, and some Π0ξ-complete ω-powers, extending previous works on the topological complexity of ω-powers [Fin01, Fin03, Fin04, Lec01, Lec05, DF06]. We prove effective versions of these results; in particular, for each recursive ordinal ξ < ω 1 there exist some recursive sets A ⊆ 2 such that A∞ ∈ Π 0ξ \Σ 0 ξ (resp...

متن کامل

Topological Complexity of ω-Powers : Extended Abstract

1 Equipe Modèles de Calcul et Complexité Laboratoire de l’Informatique du Parallélisme CNRS et Ecole Normale Supérieure de Lyon 46, Allée d’Italie 69364 Lyon Cedex 07, France. [email protected] 2 Equipe d’Analyse Fonctionnelle Université Paris 6 4, place Jussieu, 75 252 Paris Cedex 05, France [email protected] and Université de Picardie, I.U.T. de l’Oise, site de Creil, 13, all...

متن کامل

Topological properties of omega context-free languages

This paper is a study of topological properties of omega context free languages (ω-CFL). We first extend some decidability results for the deterministic ones (ωDCFL), proving that one can decide whether an ω-DCFL is in a given Borel class, or in the Wadge class of a given ω-regular language . We prove that ω-CFL exhaust the hierarchy of Borel sets of finite rank, and that one cannot decide the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0809.1812  شماره 

صفحات  -

تاریخ انتشار 2008